# The Life-history of Melicertidium octo. costatum (Sars), a Leptomedusan with a theca-less Hydroid Stage. 

By<br>Prof. James F. (iemmill, University College, Dundee.

With Plate 16.

Contents.

340Description of the Tank Hidroid341Referexces346

This well-known medusa (fig. 19) is classified among the Thaumantiadae, and is characterized by the presence of eight 'radial' canals on which the gonads are dereloped. The marginal tentacles are numerous (up to 140) and of unequal size, larger and smaller ones alternating more or less regularly. There are no lithocysts, cordyli or ectodermal ocelli. The manubrium is short, the mouth four-angled and withont oral tentacles. The medusa has a fairly wide distribntion in the North-east Atlantic ranging from Bergen to Falmouth. (See E. T. Browne, 4, for details and a discussion of the nomenclature.) The hydroid, as I have ascertained by rearing the eggs, proves to be a hitherto undescribed species identical with one which has been noted for several years (with a year's interval of absence) growing abundantly and spontaneously in the tanks at the Millport. Biological Station.
An allied form Melicertum campanula (Agassiz) occurs in West Atlantic Canadian and U.S. waters. In 1863
A. Agassiz (1) described the young hydroid reared from the eggs of Melicertum, but this hydroid has not up to the present been recorded in nature from the American coasts.

> Development of Fggs of Melicertidinm.

Ripe examples appeared in the tow-nettings at Nillport towards the end of June 1918. By keeping specimens in aquaria in the Research Fellowship Laboratory at thasgow University I obtained nombers of fertilized eggs. These are small ( 0.08 mm . in diameter), homogeneons-looking, faintly yellowish in tinge, and with delicate closely-adherent membrane. They are ripe before extrusion and pass ontwards through the month, ats also do the spermatozoa in the males. No membrane of fertilization is formed. Segmentation is total and equal (figs. 1-5), the two-celled stage begimning with a notch or groove on one side of the egg. A blastocoele cavity is recognizable even at the eight- or sixteen-celled stage. Farly blastulae are irregnlar in outline, the blastula wall being a single layer, but exhibiting folds and impocketings which soon straighten out and do not seem to have any subsequent formative importance (figs. 6 and 7). The larva now becomes pearshaped, and, having acquired cilia, progresses with the blont end in front and rotates in the solar direction as viewed from the blunt end (figs. 8 and 9 ). At this stage the endoderm arises by inward budding from the blastula wall (figs. 8, 9, 10). The bodding occurs first near the pointed end, and then all romd, gradually filling up the hastocoele cavity, the last part of this cavity to be filled leing at the blunt end (fig. 11). The endoderm cells are rounded, slightly granular, and less transparent than the ectoderm. The planula now elongates, becoming almost worm-like, and swims vigorously throngh the water at any depth. Later it seeks the bottom and becomes attached. The mode of attachment presents certain peculiarities which I hope to ehcidate later. The free end becomes swollen and rudiments of the first tentacles appear (fig. 12). Figs. 12-14 illusimte fom-tentacled and eight-tentacled stages. Both show a delicate perisare envering hydrorhiza and hydrocanhas,
and ceasing at the base of the hydranth withont forming even a rudimentary hydrotheca. At no stage are the bases of the tentacles united by a web or membrane. The sixteen-tentacled stage is entirely similar to young polyps (fig. 15) of the tank hydroid described later in this paper, though the latter are relatively rather larger. no doubt because they conld draw during growth on a mutritional reserve greater than was at the disposal of the parent of the colony. This year (1919) T have repeated the rearing experiments and obtained the same resnlts.

Description of the Tank Hydroid.
In the early spring of 1916,1917 , and 1919 colonies of an apparently new theca-less hydroid appeared on stones and on glass in several of the tanks at the Millport Biological Station. Dr. James Ritchie, Royal Scottish Museum, Edinhurgh, to whom I sent a specimen in February 1917, made the conjecture, which has proved right, that it might turn out to be the hydroid of some Leptomedusan. A little later in the same year young medusae budded off from a colony were obtained. They had four radial canals, eight tentacles, no lithocysts, and no ectodermal ocelli or oral tentacles. I tried to rear them, but without success. The matter remained there till July 1918, when the results (given above) of rearing Melicertidium eggs unexpectedly connected the tank hydroid with this medusa, and made me undertake more careful experiments (see below) on rearing the young medusae, when these were budded off from the tank colonies in the spring of the present year (1919). The characters of the hydroid are as follows :

Hydranth: entirely theca-less. Tentacles: long, slender, tapering, with solid core of endoderm cells in a single row, studded with nematocysts, not united at their bases by a membrane, arranged in a single circle but tending when fully extended to curve upwards and downwards alternately, commonly sixteen in number, but often more numerons especially in sterile colonies, in which individuals with as many as thirty-two may be noted. Hypostome: conical when closed, shaped like a shallow wide-mouthed urn when

[^0]fully openerd, lined for a very short distance downwards from the margin by close-set colmmar cells having the characters of ectoderm. Body of Hydranth: sometimes slender. elongated ( 1.7 mm . in length), sometimes short ( 0.9 mm .) or vase-shaped according to contraction, usually showing constriction below hypostome, furnished with stinging cells near middle, merging insensibly into hydrocaulus, except in contracted condition, when junction becomes evident. Hydrocaulus: short but varying in length ( 1 mm . to 1.7 mm .), often irregularly bent, evidently weak, unlranched except in giving off the stalk of a merlusa bud. Hydrorhiza: creeping, branching but not anastomosing, $0 \cdot 1 \mathrm{~mm}$. across (including perisare). The distinction between hydrocanlus and hydrorhiza is not always sharply apparent. In the thicker parts of a colony hydrorhizae may intertwine, and leaving the surface of attachment become equivalent to low irregular branching hydrocauli. When, however, the hydrorhizae are not too crowded they remain adherent and give off mbranched hydrocauli. Perisarc: thin, wrinkled irregnlarly but not ringed, enclosing hydrorliza and hydrocaulus and separate from these except at occasional points of 'anchorage', thinning away at distal end of hydrocaulus and fusing with ectoderm at base of hydranth which is entirely theca-less. Medusae: Gonophore production takes place from the begimning of February till the end of March. Parts of the colony were isolated, kept in filtered sea-water, and in course of time a number of young medusae were collected. The buds appear at the end of short stems arising from the hydrocanlus well below the base of the hydranth, each hydrocanlus only producing a single medusa. The merlusa buds, especially at full size, are more elongated than the free medhsae, but the characteristic shape is acquired during the period immediately prior to detachment when vigorons pulsations may be noted. The young medusae have four rather wide radial camals, four tentacles opposite these, four small tentacles or tentacle honds in the interradii, and no lithocysts or ectodermal ocelli (figs. 16, 17, 18). The bell is dome-like and moderately drep: thr stomach is quadrangular and the
manbrimm short, showing four blont, mdially-placed, grooved angles. At first the hell shows as small pit in the middle of the aboral surface, to the bottom of which a cone-like projection of the stomach is anchored. Later this remmant of the conmexion betwern bud and stalk becomes severed, and the summit of the dome shows an upward comexity (fig. 17). Over the rest of the hell, the mesogloea superficial to the plane of the stomach and radial canals forms a relatively thin layer. At their bases the tentacles are hollow and slightly swollen, the endoderm here contaning yellowish intracellular pigment. The measurements of the roung medusa at rest are: height 1.2 mm ., breadth $1 \cdot 3 \mathrm{~mm}$., interradial rianeter of stomach 10.45 mm . ; breadth of radial camal 0.06 mm ., depth of superficial mesogloea 0.075 mm . The surface of the bell shows numerous minute glancing-points which do not disappear on treatment with acid. The medusae were kept alive for a time, and increased in size ; the four interradial tentacles grew almost as bir as the radial ones, and new tentacle buds appeared in irregular sequence, one for each interspace between a radial and an interradial tentacle. Stages with ten, twelve, fourteen, and sisteen tentacles were thus obtained. Medusae four weeks old and with $c$. ten tentacles showed a single blunt outgrowth from the stomach in each interradius (fig. 18, b). A week later (c. twelve tentacles) these ontgrowths lad extended wrer the summit of the bell, becoming pointed at their ends. Ja another week or fortnight (c. fourteen to sixteen tentacles) the outgrowths had extended downwards along the sides of the bell and become continuous with slender corresponding upgrowths from the ring canal (fig. 19). I failed to rear the medusate further, but they had already reached the eight-rayed condition characteristic of Melicertidium.

I have not obtained the early four-rayed medusae in townettings off the Millport Station, but they were moderately abuudant during April 1919 in plankton from the Gareloch, ${ }^{1}$ an inlet farther up the Firth of Clyde.

[^1]
## General.

As far back as 1865 A. Agassiz (1, p. 130) inferred from the results of tow-nettings that the eight-rayed condition in Melicertuin campanula was reached by the formation of four new interradial outgrowths from the stomach in an originally four-rayed young medusa.

Mayer (\%, p. 208) thinks that Melicertum campanula (Agassiz) and Melicertidium octocostatum (Sars) are probably identical species, and that Melicertum should have priority as the generic name. However, there are sufficient reasons (especially under (1) and (2) in the following comparison) for keeping Melicertum and Melicertidium as distinct genera, at least in the meantine.

## Melicertum (hydroid)

Melicertidium (hydroid)
(1) Tentacles united at their bases by a membrane.
(2) A small theca at base of hydranth.
(3) Tentacles up to ten in number.

> Melicertum (medusa).
(4) Harliest free stage with only two marginal tertacles.
(5) No 'radiating lines' on sub-umbrellar surface.
(6) Marginal tentacles, in adult equal or sub-equal in size.
their bases by a meurbrane.
(2) No theca.
(3) Tentacles sixteen or more (up to thirty-two) in number.

> Melicertidium (medusa).
(4) Larliest free stage with four marginal tentacles and four intervening tentacle buds.
(5) Numerous 'radiating lines' on sub-umbrellar surface.
(6) Marginal tentacles in the largest specimen examined consist of a bout sixty small tentacles and about eighty much larger ones.

1 arree with Romanes' opinion ( $\mathbf{9}, 1,5 \cdot 27$ ) that the radiating lines' referred to under Melicertidiun (medusa) above are hands of muscle fibres, and not of nematocysts as is thought by Browne (4, p. 764) and others.

Additional instances in which theca-less hydroids have beent reared from Leptomedusae are recorded by Clans (5), Metehmikoff (8), and Brooks (2). The medusae concerned belong to the genus Eutima (Mccrady), the species being Eutima campanulata (Claus), Octorchis gegenbauri (Haeckel), in the first two cases, and Eutima mira (McCrady) in the third. Eutima differs from Melicertum and Melicertidium, among other things, in having marginal lithocysts, and in having the stomach mounted on a long peduncle. In the hydroid of E. campanulata, described by Claus and named by him Campanopsis, the tentacles are up to twentyfour in number and are united at their bases by a membrane. A theca is entirely absent, and the young medusae are formed near the middle of the hydranth body. Brooks (2) describes the hydroid of E. mira as small, Perigonimus-like, with eight tentacles united at their bases by a membrane.
E. Stechow (10) has described a theca-less hydroid, with short hydrocaulus having definitely ringed perisare, with hydrorhizae forming a network, and with fourteen to eighteen tentacles which were not, so far as could be made out in the preserved material, united at their bases by a membrane. The specimens were in a tube left by a former assistant at Munich and were labelled 'Polyp of Octorchis'. Stechow names it Campanopsis dubia and considers the medusa to have been an Octorchis Entima.

On the whole, the life-history of Melicertidium supports the generally-accepted view that Leptomedusan hydroids are derived from Authomedusans. The hydroid is theca-less, the medusa is deep and has no lithocysts or ectodermal ocelli, and though the gonads are on the eight radial canals in the adult, the mode of development of the second four radial canals by ontgrowths from the stomach makes it clearly possible that ontogenetically or phylogenetically the gonad tissue of the
other four originates in the region of the stomach or manubrium. Indeed, in the carliest stage of the Melieertidimen medusa identitied 1 y Browne ( 4, p. 763 ) the gonads extemed out wards from the stomach only atong the proximal hatres of the radial cantials.

The Leptometusan lianily Thaumantiadate, to whieh Melicertum and Melicertidium belong, contains other twelve lypical genera. The hydroid stages of only three of these, viz. Thammatias (Wright, 11), Latodicea (Metchnikoff, 8), and Dipleurosoma (Browne, 3), are known, and, curionsly enough, they all possess complete thecae. In having a rudimentary theca Melicertum recalls the Anthomedusan Perigonimus, while Melicertidium having no theca is in line with Eutima (Campanopsis) and Tima, which are members of the Leptomedusian Family Eucopidae. Dr. James Ritchie compares the general facies of the Melicertidiam hydranth to that of Halecium. The just liberated medusa of Melicertidimn resembles that of Podocoryne carnea except in having a slightly shorter manubrium and no oral tentacles. It is evident that on the borderland between the Antho- and the leptomedusae there are numerous forms which, whether in their hydroid or their medusoid stages, exhibit features characteristic of better-defined members of either group.

I have to thank the Trustees of the Camegie berquest for a grant in aid of the expenses of this investigation, and the staff of the Millport Station for help in obtaining material and rearing the young medusae.

## References.

1. Agassiz, A.-"North American Acalephae". Cat. Mus. Comp. Zool. Harvard', ii, 1865, p. 130, figs. 202-4.
2. Brooks, W. K.-" On the Life-history of Eutima and on Radial and Bilateral Symmetry in Hydroids ", ' Zool. An\%.', Bd. 7, 1884.
3. Browne, E. T.-" Fauna and Flora of Valencia Harbour", Proc. Roy. Hish Aead.'. ser. iii, vol. 5, 1898-1900, p. 696.
4.     - " A Report on the Medusae fonnd in the Firth of Clyde ", 'Proc. Roy. Soc. Edinburgh ', 1905, p. 72.
5. Clans, C.-'Arbeit. Zool. Inst. Wien ', Bd. 4, 1881, Heft 1. p. 289.
6. Hartlaub.-‘'Wiss. Mecres-Untersuch.', Bd. 1, 1894, p. 192.
7. Mayer, A. (1.-" Medusae of the World", Public. Carnegie Inst. Washington', 109. 1910. vol. i, pp. 207-8.
8. Metchnikoff, E.-'Embryologische Studien an Medusen : Wien, 1886.
9. Romanes, (:. I.-" An Account of some new S'pecies, Varieties, and Monstrous Forms of Medusae ", Journ. Liinn. Soc. Koology ', vol. 12, 1876. pp. 524-31.
10. Stechow, L.-" Ein thecenloser Hydroid der mit einer Leptomedusa in (ienerationswechsel steht ", 'Zool. Anz.', Bcl. 41, 1913. pp. 582-6.
11. Wright, T'. S.-"On the Reproduction of Thamantias inconspicua", 'Quart. Journ, Mier. Sci'’, vol. 2, 1862, pp. 2:2, 208.

## EXPLANATION OF' PLATE 16.

Figs. 1-15.-Development of Melicertidium.
Figs. 1-7.-Stages in segmentation and blastula formation of the ceg of Melicertidiun.

Figs. S-11.-Change to the planula, formation of endoderm (end), \&c. The arrow and circle between 9 and 10 indicate respectively the direction of progression of the larva, and its rotation as viewed from the narrow end.

Figs. 12-18.-Fixation of the larva : formation of first tentacles.
Fig. 14.-Stage with eight tentaeles.
Fig. 15.-Portion of a colony, (a) hydranth ; (b) medusa ready for liberation; (c) young hydranth and young medusa bud; (d) medusa bud almost fully grown ; (e) hydranth fully stretched out ; $(f)$ young polypite arising from a hydrorhiza.

Fig. 16.-Just liberated medusa.
Fig. 17.-Aboral part of medusa, two weeks old, showing mesoglucal projection on summit of bell.

Fig. 18, $(a),(b),(c)$.-Stomach and radial canals viewed from above in two days, three weeks, and six weeks' old medusae respectively, showing the formation, by interradial outgrowths from the stomach, of four new 'radial' canals.

Fig. 19.-Medusa, seven weeks old, showing interradial outgrow ths from the stomach which have met corresponding upgrowths from the ring canal. r, one of the four original radial canals; i.R., one of the four new interradial canals formed in the manner described ahove.


[^0]:    A : 2

[^1]:    ${ }^{1}$ Since this paper was written, I have found the intermediate stages deseribed above in May plankton from this loeality, and the adults at the end of June.

